相关文章
【GPLT 一阶题目集】L1-086~L1-090
目录
L1-086 斯德哥尔摩火车上的题
L1-087 机工士姆斯塔迪奥
L1-088 静静的推荐
L4-103 就不告诉你
L4-104 Wifi密码 L1-086 斯德哥尔摩火车上的题 上图是新浪微博上的一则趣闻,是瑞典斯德哥尔摩火车上的一道题,看上去是段伪代码: s
a…
建站知识
2024/10/11 4:30:08
L1、L2正则VS L1、L2 loss
1.L1、L2正则——参数空间 L1范数表达式为:,
L2范数表达式: L1正则(上图左),使得某些特征量变为0,因此具有稀疏性,可用于特征选择;
L2正则(上图右ÿ…
建站知识
2024/10/8 13:54:55
L1 VS L2(深度学习中的L1与L2)
L1 loss
L1 loss的数学公式和函数图如下所示: L1函数连续,但是在𝑦−𝑓(𝑥)0处不可导,L1 loss大部分情况下梯度都是相等的,这意味着即使对于小的损失值,其梯度也是大的,这不利于函数的收敛和模…
建站知识
2024/10/8 8:52:16
L1、L2正则化以及smooth L1 loss
一、L1、L2正则化 当样本特征很多,而样本数相对较少时,学习过程很容易陷入过拟合。为了缓解过拟合问题,可以对损失函数加入正则化项。正则化项中的Lp范数有很多,常见的有L1范数和L2范数。 给定数据集D {(x1࿰…
建站知识
2024/10/9 22:48:27
机器学习------L1、L2规范化(L1 Regularization、L1 Regularization)
取自孙明的"数字图像处理与分析基础"
1. 引入——病态问题和约束 通过改变模型的拟合能力来避免过拟合并不是一件容易的事情,更常用的办法是使用规范化对模型的参数进行一定的约束。下面来考虑一个非常简单的例子,求下面方程的解…
建站知识
2024/10/9 13:08:55