打赏

相关文章

L1-norm (L1范数) L2-norm(L2范数)

同样存在L0、L3等,L1、L2范数应用比较多。 一个向量的 norm 就是将该向量投影到 [0, ∞​) 范围内的值,其中 0 值只有零向量的 norm 取到。不难想象,将其与现实中距离进行类比,在机器学习中 norm 也就总被拿来表示距离关系&#x…

正则项L1和L2

正则项 摘要 本文章主要讲述了L1和L2的基本定义,以及其所具有的性质,如下: L1 它的主要特性是能够产生稀疏解,某种程度上使得增加模型的”解释性“L2 它的主要特性是偏向于求得较小的解,通过限制权重的大小实现了对模型空间的限制,从而一定程度可以避免过拟合针对他们的…

L1 loss 是什么

L1 Loss(也称为Mean Absolute Error)是深度学习中常用的一种损失函数,用于衡量模型预测结果与真实标签之间的平均绝对误差。具体来说,对于一个大小为N的样本集合,L1 Loss定义如下: L 1 ( y , y ^ ) 1 N ∑…

L1、L2、smooth L1三类损失函数

一、常见的MSE、MAE损失函数 1.1 均方误差、平方损失 均方误差(MSE)是回归损失函数中最常用的误差,它是预测值与目标值之间差值的平方和,其公式如下所示: 下图是均方根误差值的曲线分布,其中最小值为预测值…

正则项:L1与L2

正则项 一般地,我们优化 M S E MSE MSE l m s e ∑ i ( y i − y ^ i ) 2 n l_{mse}\frac{\sum_i (y_i-\hat y_i)^2}{n} lmse​n∑i​(yi​−y^​i​)2​ 为了使参数尽可能小,加入正则项,防止过拟合,减小方差。L1正则可以更容易…

L1, L2以及smooth L1 loss

在机器学习实践中,你也许需要在神秘的L1和L2中做出选择。通常的两个决策为:1) L1范数 vs L2范数 的损失函数; 2) L1正则化 vs L2正则化。 作为损失函数 L1范数损失函数,也被称为最小绝对值偏差(LAD)&#…

YK-L1刷机

文章目录 1.测试是否能够连接到路由器2.刷breed3.Padavan firmware编译4.烧板5.验证杂文1.1设置应用开机后自启动1.编写测试用程序2.编写运行脚本3.编写start.service4.设置为开机自启动5.验证 1.2内核模块编写(使用insmod方式)1.3内核模块编写&#xff…

L1 和 L2的区别

L1 和 L2的区别: L1范数是指向量中各个元素绝对值值和,也有一个美称叫“稀疏规则算子”。(Lasso regularization) 比如向量 A [ 1 , − 1 , 3 ] A [1,-1,3] A[1,−1,3],那么A的L1范数为 ∣ 1 ∣ ∣ − 1 ∣ ∣ 3 ∣ |1||-1||…

手机版浏览

扫一扫体验

微信公众账号

微信扫一扫加关注

返回
顶部